Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use

Identifieur interne : 001374 ( Main/Exploration ); précédent : 001373; suivant : 001375

Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use

Auteurs : Tore Skotland [Norvège]

Source :

RBID : ISTEX:663C4DAA027BF59AC8F27510ACA4F252F073F20C

English descriptors

Abstract

Molecular imaging (MI) takes advantage of several new techniques to detect biomarkers or biochemical and cellular processes, with the goal of obtaining high sensitivity, specificity and signal‐to‐noise ratio imaging of disease. The imaging modalities bearing the most promise for MI are positron emission tomography (PET), single photon emission computer tomography (SPECT) and different optical imaging techniques with high sensitivity. Also magnetic resonance imaging (MRI) with contrast agents like ultra‐small superparamagnetic iron oxide particles (USPIO), magnetic resonance spectroscopy and ultrasound imaging with contrast agents may be useful approaches. MI techniques have been used in the clinic for many years, i.e. PET imaging using 18 F‐labeled fluorodeoxyglucose. Animal studies have during the last years revealed great potential for MI also with several other agents. The focus of the present article is the challenges of clinical imaging of intracellular targets following intravenous injection of the agents. Thus, the great challenge of getting enough contrast agent into the cytosol and at the same time obtaining a low signal from tissue just outside the diseased area is discussed. Copyright © 2012 John Wiley & Sons, Ltd.
Animal studies have during the last years revealed a great potential for molecular imaging with different types of targeting molecules. Challenges of bringing such agents into common clinical use are discussed, with a special focus on the challenges to image intracellular targets following intravenous injection of the agents.

Url:
DOI: 10.1002/cmmi.458


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use</title>
<author>
<name sortKey="Skotland, Tore" sort="Skotland, Tore" uniqKey="Skotland T" first="Tore" last="Skotland">Tore Skotland</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:663C4DAA027BF59AC8F27510ACA4F252F073F20C</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/cmmi.458</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-0QB3PDB4-K/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002391</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002391</idno>
<idno type="wicri:Area/Istex/Curation">002391</idno>
<idno type="wicri:Area/Istex/Checkpoint">000383</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000383</idno>
<idno type="wicri:doubleKey">1555-4309:2012:Skotland T:molecular:imaging:challenges</idno>
<idno type="wicri:Area/Main/Merge">001375</idno>
<idno type="wicri:Area/Main/Curation">001374</idno>
<idno type="wicri:Area/Main/Exploration">001374</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use</title>
<author>
<name sortKey="Skotland, Tore" sort="Skotland, Tore" uniqKey="Skotland T" first="Tore" last="Skotland">Tore Skotland</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo</wicri:regionArea>
<wicri:noRegion>University of Oslo</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Biochemistry, Institute of Cancer Research, Norwegian Radium Hospital, Montebello, 0310, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Norvège</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Correspondence address: T. Skotland, Centre for Cancer Biomedicine, Faculty Division, Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Contrast Media & Molecular Imaging</title>
<title level="j" type="alt">CONTRAST MEDIA AND MOLECULAR IMAGING</title>
<idno type="ISSN">1555-4309</idno>
<idno type="eISSN">1555-4317</idno>
<imprint>
<biblScope unit="vol">7</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="6">6</biblScope>
<biblScope unit="page-count">6</biblScope>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2012-01">2012-01</date>
</imprint>
<idno type="ISSN">1555-4309</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1555-4309</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Amine groups</term>
<term>Animal studies</term>
<term>Background level</term>
<term>Background signal</term>
<term>Bioconjug chem</term>
<term>Biol</term>
<term>Biol chem</term>
<term>Body imaging</term>
<term>Cancer biomedicine</term>
<term>Cancer cells</term>
<term>Cancer research</term>
<term>Cell membrane</term>
<term>Cell membranes</term>
<term>Cell surface</term>
<term>Cellular processes</term>
<term>Cellular uptake</term>
<term>Chem</term>
<term>Clinical imaging</term>
<term>Contrast agents</term>
<term>Contrast media</term>
<term>Copyright</term>
<term>Curr opin chem biol</term>
<term>Cytosol</term>
<term>Different types</term>
<term>Diseased</term>
<term>Diseased area</term>
<term>Drug deliv</term>
<term>Drug delivery</term>
<term>Endocytic mechanisms</term>
<term>Endocytic vesicle</term>
<term>Endocytosis</term>
<term>Endoplasmic reticulum</term>
<term>Endosomes</term>
<term>Excretion</term>
<term>Extracellular</term>
<term>Extracellular structure</term>
<term>Extracellular targets</term>
<term>Future studies</term>
<term>Golgi apparatus</term>
<term>Good images</term>
<term>Great challenge</term>
<term>High sensitivity</term>
<term>Imaging</term>
<term>Imaging agent</term>
<term>Imaging agents</term>
<term>Imaging modalities</term>
<term>Imaging molecules</term>
<term>Imaging techniques</term>
<term>Intracellular</term>
<term>Intracellular targets</term>
<term>Intracellular transport</term>
<term>Intravenous injection</term>
<term>John wiley sons</term>
<term>Large number</term>
<term>Lipophilic</term>
<term>Long time</term>
<term>Lysosome</term>
<term>Magn reson</term>
<term>Magnetic resonance imaging</term>
<term>Magnetic resonance spectroscopy</term>
<term>Medical imaging</term>
<term>Modality</term>
<term>Molecular imaging</term>
<term>Molecular target</term>
<term>Molecule</term>
<term>Monoclonal antibodies</term>
<term>Norwegian radium hospital</term>
<term>Optical imaging</term>
<term>Passive diffusion</term>
<term>Peptide</term>
<term>Plasma membrane</term>
<term>Positive charge</term>
<term>Positron emission tomography</term>
<term>Present article</term>
<term>Proton sponge</term>
<term>Radiolabeled antibodies</term>
<term>Rapid clearance</term>
<term>Recent years</term>
<term>Receptor</term>
<term>Sensitive imaging techniques</term>
<term>Single photon emission computer tomography</term>
<term>Skotland</term>
<term>Slow excretion</term>
<term>Spect</term>
<term>Spect imaging</term>
<term>Successful imaging</term>
<term>Such compounds</term>
<term>Superparamagnetic iron oxide particles</term>
<term>Tissue volume</term>
<term>Toxin</term>
<term>Transporter</term>
<term>Tumor cells</term>
<term>Ultrasound</term>
<term>Ultrasound imaging</term>
<term>Uorescent probe</term>
<term>Viable cancer cells</term>
<term>Vivo imaging</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Molecular imaging (MI) takes advantage of several new techniques to detect biomarkers or biochemical and cellular processes, with the goal of obtaining high sensitivity, specificity and signal‐to‐noise ratio imaging of disease. The imaging modalities bearing the most promise for MI are positron emission tomography (PET), single photon emission computer tomography (SPECT) and different optical imaging techniques with high sensitivity. Also magnetic resonance imaging (MRI) with contrast agents like ultra‐small superparamagnetic iron oxide particles (USPIO), magnetic resonance spectroscopy and ultrasound imaging with contrast agents may be useful approaches. MI techniques have been used in the clinic for many years, i.e. PET imaging using 18 F‐labeled fluorodeoxyglucose. Animal studies have during the last years revealed great potential for MI also with several other agents. The focus of the present article is the challenges of clinical imaging of intracellular targets following intravenous injection of the agents. Thus, the great challenge of getting enough contrast agent into the cytosol and at the same time obtaining a low signal from tissue just outside the diseased area is discussed. Copyright © 2012 John Wiley & Sons, Ltd.</div>
<div type="abstract">Animal studies have during the last years revealed a great potential for molecular imaging with different types of targeting molecules. Challenges of bringing such agents into common clinical use are discussed, with a special focus on the challenges to image intracellular targets following intravenous injection of the agents.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
<region>
<li>Østlandet</li>
</region>
<settlement>
<li>Oslo</li>
</settlement>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="Skotland, Tore" sort="Skotland, Tore" uniqKey="Skotland T" first="Tore" last="Skotland">Tore Skotland</name>
</noRegion>
<name sortKey="Skotland, Tore" sort="Skotland, Tore" uniqKey="Skotland T" first="Tore" last="Skotland">Tore Skotland</name>
<name sortKey="Skotland, Tore" sort="Skotland, Tore" uniqKey="Skotland T" first="Tore" last="Skotland">Tore Skotland</name>
<name sortKey="Skotland, Tore" sort="Skotland, Tore" uniqKey="Skotland T" first="Tore" last="Skotland">Tore Skotland</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001374 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001374 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:663C4DAA027BF59AC8F27510ACA4F252F073F20C
   |texte=   Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021